中国海光

第11卷 第7期

295 毫微米附近连续可 调谐二次谐波的产生

陈述春 程录荣* 余尧楚 戴凤妹

(中国科学院上海光机所)

提要:由闪光灯泵浦若丹明 6G 染料激光器产生的较低输出功率水平 的宽带激 光辐射,通过 KDP 晶体,有效地获得了窄带紫外谐波输出。通过改变相位匹配角θ, 紫外谐波输出能在相当宽的光谱区内连续调谐。

Generation of continuously tunable second harmonics around 295 nm

Chen Shuchun, Cheng Lurong, Yu Yaochu, Dai Fengmei

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: The ultraviolet second harmonic radiation is efficiently generated by doubling the frequency of a flashlamp-pumped rhodamine 6G dye laser with broaband emission. Using KDP crystal, the UV spectral line width is remarkably narrowed, and the UV frequency is continuously tuned by changing the phase-matching angle.

引

染料激光器出现以后,染料激光二次谐 波的研究一直在进行^[1~5]。由于染料激光二 次谐波在紫外区域的连续可调谐性,因而对 某些选择激发研究是独特的和理想的。同时, 宽带染料激光辐射的倍频具有与红宝石、 YAG 等窄带激光倍频不同的特点,因而引起 人们的重视。但在国内,有关宽带闪光灯 泵浦染料激光倍频的工作,尚未见有人报 道。

二、实 验

· 400 ·

收稿日期:1983年7月20日。

^{*} 南京工学院83年毕业实习生。

图1 实验装置图

谐元件时,得到宽带输出。染料为2×10⁻⁴ M 乙醇溶液,激光带宽~70 Å,中心波长 590 毫 微米,脉宽 0.65 微秒。重复频率可调,最高 达 40 次/秒,但激光发散角劣化,一般情况下 使用重复率为 5 次/秒以下。

采用 KDP 晶体作为倍频元件。对中心 波长 590 毫微米计算了相位匹配角,加工后 的晶体 $\theta = 62^\circ$,方位角 45°。晶体长 30 毫米, 截面 25×25 毫米²。倍频时为改善基波激 光光束质量,在 60 厘米长的腔内放置一个 ϕ 1.3 毫米的小孔,输出远场图样表明,激光 是单横模输出,发散角~4 毫弧度。为了增 加基波光的功率密度,在 KDP 晶体前面,用 一个 20 厘米焦长的柱面透镜汇集光束。在 晶体中,于光斑最小处功率密度为 0.4 兆瓦/ 厘米²。

通过 KDP 晶体产生的紫外谐 波,由二 米光栅摄谱仪摄谱。在 300 毫微米附近取一 级光谱,色散 7.8Å/毫米。对于不同的 θ 角, 拍摄了在不同频率处获得的谐波输 出光谱, 如图 2 所示。其中最后一行拍摄了 Hg 灯的

图 2 用二米光栅摄谱仪得到的谐波输出 光谱,取一级光谱,色散 7.7 Å/毫米 标准谱线。由照片可见谐波线宽是较窄的, 小于 5Å,某些谱线有较强的背景,它是由板 盒反射的散射光引起中心波长附近乳胶感光 所致。

图 3 宽带 R6G 染料激光辐射的光谱分布

用一米光栅单色光计,通过光电管和示 波器,测定了染料激光辐射宽带基波光的发 射光谱,结果在图3给出。可见发射带宽约 为 Δλ~70Å。当改变角θ时,谐波输出峰波 长也相应改变。对不同的θ角,测定了在不 同波长窄带谐波输出的相对强度,由图4中 的实验点给出。它与计算的调谐曲线(见后 面一节)很接近。与图3比较可以发现,调谐 曲线与宽带发射光谱分布有相应的关系,在 295毫微米附近,紫外谐波有最大较出,与基 波光的中心波长590毫微米相当。但谐波带 宽(~5Å)仅为基波带宽(~70Å)的7% 左 右。

三、结果的分析和讨论

为了对上述实验结果给出适当的理论解释,做如下分析:

1. 宽带内的和频效应对谐波的产生起 主要作用

对于一波数为 ν_1 、功率为 P_1 的基波光, 通过非线性晶体后,在波数 $\nu_2=2\nu_1$ 处产生的倍频功率 P_2 ,通常由下式描写:

$$P_{2} = F P_{1}^{2} \sin^{2} \left(\frac{1}{2} \Delta K l\right) / \left(\frac{1}{2} \Delta K l\right)^{2}, \quad (1)$$

其中,F为常数,和

 $\Delta K = 4\pi \nu_1 [n_1^0(\nu_1) - n_2^\varepsilon(\nu_2)], \quad (2)$ $n_1^0(\nu_1)$ 和 $n_2^\varepsilon(\nu_2)$ 分别为基波寻常光和谐波 非 常光的折射率。并且对固定的相位匹配角 θ , 在 $\nu_1 = \nu_0$ 和 $\nu_2 = 2\nu_0$ 附近,可以导出:

$$\Delta K = 4\pi\nu_1 \left[2\frac{\partial n_2^0}{\partial \nu_2} \Big|_{\nu_1 = 2\nu_0} - \frac{\partial n_1^e}{\partial \nu_1} \Big|_{\nu_2 = \nu_0} \right] \Delta \nu,$$
(3)

 ΔK 为失配量,当 $\Delta K = 1.39$ 时, P_2 下降为 其最大值的一半,利用这个条件和文献[6] 给 出的色散公式,对于我们的晶体长度 l = 30毫米, $\nu_0 = 16950$ 厘米⁻¹($\lambda_0 = 590$ 毫微米),得 到 $\Delta \nu = 1.2$ 厘米⁻¹, $2\Delta \lambda = 0.8$ Å。可见在 70 Å 的基波带宽内,只有极有限的频率间隔内的 辐射参与倍频。

而实际上,对于一宽带基波,必同时伴有 和频发生。对于晶体取向 $\theta_m = \theta_0$,在相应的 中心频率(波数) ν_0 附近, $\nu_1 = \nu_0 + \Delta \nu$ 和 $\nu'_1 = \nu_0 - \Delta \nu$,将在 $\nu_2 = 2\nu_0$ 处产生和频,其功率 $P\nu_1, \nu'_1$ 为:

$$P\nu_{1},\nu_{1}' = FP_{1}P_{1}'\sin^{2}\left(\frac{1}{2}\Delta Kl\right) / \left(\frac{1}{2}\Delta Kl\right)^{2},$$
(4)

并且在有限的带宽 2b 内 (即 $\nu_0 - b \ll \nu_1 \ll \nu_0$ + b),这种和频在相位匹配波数 ν_0 二侧,由 所有成对的波数 $\nu_1 = \nu_0 \pm 4\nu$ 给出,总的和频 功率为:

$$P_{2b} = F \int_{-b}^{b} d\nu_{1} \int_{-b}^{b} P_{1} P_{1}'$$

$$\times \sin^{2} \left(\frac{1}{2} \Delta K l\right) / \left(\frac{1}{2} \Delta K l\right)^{2} d\nu, \quad (5)$$

失配量 $\Delta K = K(\nu_2) - K(\nu_1) - K(\nu'_1)$ K 为波矢 $K = 2\pi\nu n_o$ 在 $\nu = \nu_0$ 附近可导出 $\Delta K = -2\pi \left[2 \frac{\partial n_1^0}{\partial \nu} + \nu_0 \frac{\partial^2 n_1^0}{\partial \nu^2} \right] \Big|_{\nu = \nu_0} (\Delta \nu)^2,$ (6)

 2. 谐波输出功率对频率的关系——调 谐曲线

按上述分析,利用式(5),可在 4K = 0 相位匹配条件下,在基波有效带宽 2b 内,对不同的相位匹配波数 v_1 计算谐波输出功率,从而得到调谐曲线。对图 3 给出的基波光谱分布,这样计算的调谐曲线以图 4 中的实线给出,可见实验点落在它的附近。

3. 通过改变角 θ 改变谐波波长

由于 n^ε₂(θ) 是角度的函数,

 $n_{2}^{e}(\theta) = n_{0} n_{e} / (n_{0}^{2} \sin^{2} \theta + n_{e}^{2} \cos^{2} \theta)^{1/2},$ (7)

其中 no 和 ne 分别为晶体的二主折射率。 在相位匹配 角 θo 和 中 心 波 数 νo 附 近

有:

$$n_{1}-n_{2}=n_{1}^{0}(\nu_{1})-n_{2}^{e}(\nu_{2},\theta)$$

$$=\left[2\frac{\partial n_{2}^{e}(\nu_{2},\theta)}{\partial \nu_{2}}+\frac{\partial n_{1}^{0}(\nu_{1})}{\partial \nu_{1}}\right]\Delta\nu$$

$$+\frac{\partial n_{2}^{e}(\theta)}{\partial \theta}\Delta\theta,$$
(8)

这里 θ 和 ν 为独立变量。当满足相位匹配条件时 $n_1=n_2$,所以有

(下转第392页)

影响。如果是一种情况是一种情况,我们的思想。

二,在这个实验中我们仅获得了两条线 的调频输出,这归因于振荡器腔的Q值很 低,其他振动线达不到阈值。为了扩大输出 谱的调谐范围,必须提高色散腔的Q值,改 善振荡器的性能。把色散腔中的通光光学面 涂上抗反射膜显然是必要的。对于 XeCl 激 光系统只能实现线调谐, 但如果腔的 Q 值很 高,调频范围可相应增加。如需进一步压窄 线宽,除缩小振荡系统的被动线宽外,还应适 当缩短谐振腔长度。但不能过短,以免影响 调谐范围。这样可以提高被动线宽与主动线 宽比。 当然加入 F-P 标准具[3] 也是提高单 色性的有效措施之一,不过要影响腔的Q 值。放电等离子体的光学均匀性的稳定也是 改善输出单色性所必须的,否则会引起跳线。 由于测量系统的限制,我们仅测得该系统输 出光的束散角约为0.2 毫弧度。

三、这种系统也可用于其他准分子激光 体系的调谐^[1,2]。我们在单台器件已实现了

(上接第402页)

$$\frac{\frac{\partial \nu}{\partial \theta}}{\left|_{\Delta k=0}\right|} = \frac{\frac{\partial n_{2}^{e}(\theta)}{\partial \theta}}{\frac{\partial \theta}{\partial \nu_{1}}} \Big/ \Big[2 \frac{\frac{\partial n_{2}^{e}(\theta, \nu_{2})}{\partial \nu_{2}}}{\frac{\partial \nu_{2}}{\partial \nu_{1}}} \Big], \tag{9}$$

代入由公式(6) 和色散公式⁶³求出的导数 $\partial n_2^e(\theta) / \partial \theta$ 、 $\partial n_2^e(\theta, \nu_2) / \partial \nu_2$ 和 $\partial n_1^o(\nu_1) / \partial \nu_1$ 可得:

 $\frac{\partial \nu_1}{\partial \theta}\Big|_{4k=0} = 10.4 \ \mathbb{P} \mathbb{R}^{-1} / \widehat{\mathbb{E}} \mathbb{M} \mathbb{E}, \quad (10)$

 $\frac{\partial v_2}{\partial \theta}$ = 20.8 厘米⁻¹/毫弧度, (11) 即当 θ 改变 1 毫弧度时, 谐波波数改变 20.8 厘米⁻¹。角度 θ 对 v 的相应关系也在图 4 的 横坐标上给出。在宽带倍频的情况下, 角 θ 是 二次谐波的唯一调谐参量。

4. 谐波输出的光谱宽度

式(4)结果表明,在理想情况下,谐波的 带宽约为 0.8Å,而实际结果要大得多。因 XeBr、XeOl 激光同时振荡^[4],文献[5] 报道 了 ArF、KrF 激光的同时振荡输出,前者为 双卤素稀有气体体系,后者是单卤素双稀有 气体体系同时振荡。因此采用上述体系可获 得调谐范围的增宽。

四、把这种系统用于 Raman 位移,能 够获得比[6]中更好的结果。这也是高单色亮 度谱区增加调谐的有效途径。当然采取另外 其他手段也可得到微微秒级的调谐输出^{cn}, 而光束质量并无变坏

参考文献

- R. T. Hawkins et al.; Appl. Phys. Lett., 1980, 36, 391.
- [2] H. Egger et al.; Appl. Phys. Lett., 1981, 39, 37.
- [3] J. Goldhar et al.; IEEE J. Quant. Electr., 1980, QE-16, 225.
- [4] 胡雪金等; "83 国际激光会议专集", 1983年9月, p. 527(中国广州)。
- [5] Laser-Electro-Optic, 1976, 8, No. 2,
- [6] R. C. Sze; IEEE J. Quant. Electr., 1979, QE-15, 1338.
- [7] T. Pacala et al.; Appl. Phys. Lett., 1982, 49, 1.

为任何实际的光束,都有限定的光谱宽度和 束散角。对于我们的情况,当单横模输出并 用半米透镜来补偿染料激光器的热效应时, 实际发散角 ≪3 毫弧度,因而 Δλ₂≈5.4Å。 这与我们的实验结果很接近。小的偏差是由 于光强并不是在整个发散角内均匀分布的, 近轴光束可能更强些,因而由摄谱照片和通 过一米光栅单色光计都观察到 ≪5Å 的谐波 线宽。

参考文献

- [1] F. M. Jahnson, M. W. Swagal; Appl. Opt., 1971, 10, 1624.
- [2] J. Kuhl, H. Spitschan; Opt. Commun., 1972, 5, 382.
- [3] D. J. Bradley et al.; Appl. Phys. Lett., 1971, 19, 172.
- [4] A. Hirth et al.; Opt. Commun., 1977, 29, 347.
- [5] Richard M. Schotlond; Appl. Opt., 1980, 19, 125.
- [6] F. Zernicke, Jr.; JOSA, 1964, 54, 1215.